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AQUARIUM AR AR FOR AQUARIUM
THE OBJECTIVES _AR: overlaying object’s information on real time video feed

__ AR for Aquarium

= Qverlaying fish information in real time

= Low computational Cost
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AQUARIUM AR AR FOR AQUARIUM
THE OBJECTIVES _AR: overlaying object’s information on real time video feed

__ AR for Aquarium
= Qverlaying fish information in real time

= Low computational Cost

= Simple sample collection
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GITS — Waseda University - 2013 Slide 4



FISH DETECTION FOR AQUARIUM AR SYSTEM

AQUARIUM AR
RESEARCH

In IAPR Conference on Machine Vision Applications 2007
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PREVIOUS RESEARCHES

_ Fish discrimination

_ Based on complex texture features of the fish

_ Operate under relatively ideal environment

_ Computational costly

(a) onginal MST (b) estimated correspondences
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(c) another MST  (d) edges in query im- (¢) estimated corre-

(f) Detected edges  (g) A shape context (h) Shape  context
matching costs
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AQUARIUM AR THIS RESEARCH
RESEARCH _ Fish detection and discrimination

_ Based on simple LBP features
_ Image processing pipeline to enhance detection performance
_ Operate under less ideal environment

_ Low computational demand
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LBP operation (Eq. 1)

LBP transform
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LBP transformed image LBP feature vector

Bongjin Jun et.al. “A compact local binary pattern using maximization of mutual information for face analysis” IAPR 2007
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AQUARIUM AR
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SAMPLES COLLECTION

- - T

AQUARIUM AR
RESEARCH

_ Manually tagging process
_ Custom software developed for tagging
_Around 400 tags an hour

_ No special installment required

Image Courtesy of Tokyo Sea-Life Park
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IMAGE PROCESSING

TRAINING DATA
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AQUARIUM AR THE PIPELINE
THE PROJECT _ Highlight dominate color of the fish

_ More or less a fundamental form of background removal

_Inconsistent output, but a strong complement to cascade classifier

P(h) = ﬂp(h, L,s) dl ds

P(h) = B,(h) — Py (h)

P(h) if P(h) > 0

H(h) = T(P(h),0) = { 0 ifP(h)<0

_ H(h) — min(H(h))
Hh) = max(H(h)) — min(H(h))

O(X, Y) = H(Ih(X, Y))
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AQUARIUM AR
THE EXPERIMENT

Image Courtesy of Tokyo Sea-Life Park
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AQUARIUM AR
THE EXPERIMENT
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[AQUARIUM AR] DATA & TRAINING

THE EVALUATION _ Two species of fish
_ First species dominated by gray tone

_ Two footages, training and evaluation

_ 600 positive and 250 negative tags for each species in each footages

_ 25 stages of cascade classifier using the LBP feature
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AQUARIUM AR
THE EVALUATION
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|

EVALUATION

extracted from the evaluation footage.

pipeline on gray colored fish without falling back.

cascade classifier training which requires the similar amount of time

required for training the proposed implementation.

The cascade classifier is applied on each positive and negative sample

Test A is the result of fish detection using proposed processing

Test B is the standard implementation with only 15 stages of the

Proposed |Standard [A B
True Positive | 443 388 393 (580
False Negative | 157 212 207 |20
False Positive |0 0 83 169
True Negative |250 250 167 |81
Training Time 997 472 93 17

(second)
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Higher accuracy
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AN

Proposed |Standard |A B
True Positive | |443 388 393 (580
False Negative| | 157 212 207 |20
False Positive | |0 |0 83 169
True Negative | [ 250 250 167 (81
Training Time 997 472 93 17

(second)

Slide 18



FISH DETECTION FOR AQUARIUM AR SYSTEM

Proposed |Standard |A B
True Positive | 443 388 393 (580
False Negative | 157 212 207 |20
False Positive |0 0 83 169
True Negative _[250 250 167 |81
Training Time 997 472 93 17

(second)

Lower Training Time

(Hence, faster detection speed)
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Proposed Pipeline

(No falling back)

Proposed |Standard |[|A P
True Positive | 443 388 393 | 580
False Negative |157 212 207 |20
False Positive |0 0 83 169
True Negative |250 250 167 (81
Training Time 997 472 /// 93 17

(second)

High False Positive

(Hence, low reliability)
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Standard Implementation

(15 stages of classifier back)

Proposed |Standard |A B
True Positive | 443 388 393 (580
False Negative | 157 212 207 |20
False Positive |0 0 83 169
True Negative |250 250 167 /|81
Training Time 997 472 ax/' 17

(second)

High False Positive

(Hence, low reliability)
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Image Courtesy of Tokyo Sea-Life Park
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AQUARIUM AR CONCLUSION
CONCLUSION _Samples are collected by manually tagging process

(Relatively fast by using customized software)
Image processing pipeline enhances the performance of cascade classifier
(Fall back required for gray tone fishes)

Compelling detection rate and accuracy

FUTURE WORKS
More efficient mechanism for orientation invariance

Fish tracking to handle difficult poses
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